FR Carte Grise
The Python SDK supports the Mindee V1 Carte Grise API.
Product Specifications
Endpoint Name
carte_grise
Recommended Version
v1.1
Supports Polling/Webhooks
❌ No
Support Synchronous HTTP Calls
✔️ Yes
Geography
🇫🇷 France
Quick-Start
Using the sample below, we are going to illustrate how to extract the data that we want using the SDK.

Sample Code
#
# Install the Python client library by running:
# pip install mindee
#
from mindee import Client, PredictResponse, product
# Init a new client
mindee_client = Client(api_key="my-api-key")
# Load a file from disk
input_doc = mindee_client.source_from_path("/path/to/the/file.ext")
# Load a file from disk and parse it.
result: PredictResponse = mindee_client.parse(
product.fr.CarteGriseV1,
input_doc,
)
# Print a summary of the API result
print(result.document)
# Print the document-level summary
# print(result.document.inference.prediction)
Sample Output (rST)
########
Document
########
:Mindee ID: 4443182b-57c1-4426-a288-01b94f226e84
:Filename: default_sample.jpg
Inference
#########
:Product: mindee/carte_grise v1.1
:Rotation applied: Yes
Prediction
==========
:a: AB-123-CD
:b: 1998-01-05
:c1: DUPONT YVES
:c3: 27 RUE DES ROITELETS 59169 FERIN LES BAINS FRANCE
:c41: 2 DELAROCHE
:c4a: EST LE PROPRIETAIRE DU VEHICULE
:d1:
:d3: MODELE
:e: VFS1V2009AS1V2009
:f1: 1915
:f2: 1915
:f3: 1915
:g: 3030
:g1: 1307
:i: 2009-12-04
:j: N1
:j1: VP
:j2: AA
:j3: CI
:p1: 1900
:p2: 90
:p3: GO
:p6: 6
:q: 006
:s1: 5
:s2:
:u1: 77
:u2: 3000
:v7: 155
:x1: 2011-07-06
:y1: 17835
:y2:
:y3: 0
:y4: 4
:y5: 2.5
:y6: 178.35
:Formula Number: 2009AS05284
:Owner's First Name: YVES
:Owner's Surname: DUPONT
:MRZ Line 1:
:MRZ Line 2: CI<<MARQUES<<<<<<<MODELE<<<<<<<2009AS0528402
Page Predictions
================
Page 0
------
:a: AB-123-CD
:b: 1998-01-05
:c1: DUPONT YVES
:c3: 27 RUE DES ROITELETS 59169 FERIN LES BAINS FRANCE
:c41: 2 DELAROCHE
:c4a: EST LE PROPRIETAIRE DU VEHICULE
:d1:
:d3: MODELE
:e: VFS1V2009AS1V2009
:f1: 1915
:f2: 1915
:f3: 1915
:g: 3030
:g1: 1307
:i: 2009-12-04
:j: N1
:j1: VP
:j2: AA
:j3: CI
:p1: 1900
:p2: 90
:p3: GO
:p6: 6
:q: 006
:s1: 5
:s2:
:u1: 77
:u2: 3000
:v7: 155
:x1: 2011-07-06
:y1: 17835
:y2:
:y3: 0
:y4: 4
:y5: 2.5
:y6: 178.35
:Formula Number: 2009AS05284
:Owner's First Name: YVES
:Owner's Surname: DUPONT
:MRZ Line 1:
:MRZ Line 2: CI<<MARQUES<<<<<<<MODELE<<<<<<<2009AS0528402Standard Fields
These fields are generic and used in several products.
BaseField
Each prediction object contains a set of fields that inherit from the generic BaseField class. A typical BaseField object will have the following attributes:
value (
Union[float, str]): corresponds to the field value. Can beNoneif no value was extracted.confidence (
float): the confidence score of the field prediction.bounding_box (
[Point, Point, Point, Point]): contains exactly 4 relative vertices (points) coordinates of a right rectangle containing the field in the document.polygon (
List[Point]): contains the relative vertices coordinates (Point) of a polygon containing the field in the image.page_id (
int): the ID of the page, alwaysNonewhen at document-level.reconstructed (
bool): indicates whether an object was reconstructed (not extracted as the API gave it).
Aside from the previous attributes, all basic fields have access to a custom __str__ method that can be used to print their value as a string.
DateField
Aside from the basic BaseField attributes, the date field DateField also implements the following:
date_object (
Date): an accessible representation of the value as a python object. Can beNone.
StringField
The text field StringField only has one constraint: its value is an Optional[str].
Attributes
The following fields are extracted for Carte Grise V1:
a
a (StringField): The vehicle's license plate number.
print(result.document.inference.prediction.a.value)b
b (DateField): The vehicle's first release date.
print(result.document.inference.prediction.b.value)c1
c1 (StringField): The vehicle owner's full name including maiden name.
print(result.document.inference.prediction.c1.value)c3
c3 (StringField): The vehicle owner's address.
print(result.document.inference.prediction.c3.value)c41
c41 (StringField): Number of owners of the license certificate.
print(result.document.inference.prediction.c41.value)c4a
c4a (StringField): Mentions about the ownership of the vehicle.
print(result.document.inference.prediction.c4a.value)d1
d1 (StringField): The vehicle's brand.
print(result.document.inference.prediction.d1.value)d3
d3 (StringField): The vehicle's commercial name.
print(result.document.inference.prediction.d3.value)e
e (StringField): The Vehicle Identification Number (VIN).
print(result.document.inference.prediction.e.value)f1
f1 (StringField): The vehicle's maximum admissible weight.
print(result.document.inference.prediction.f1.value)f2
f2 (StringField): The vehicle's maximum admissible weight within the license's state.
print(result.document.inference.prediction.f2.value)f3
f3 (StringField): The vehicle's maximum authorized weight with coupling.
print(result.document.inference.prediction.f3.value)Formula Number
formula_number (StringField): The document's formula number.
print(result.document.inference.prediction.formula_number.value)g
g (StringField): The vehicle's weight with coupling if tractor different than category M1.
print(result.document.inference.prediction.g.value)g1
g1 (StringField): The vehicle's national empty weight.
print(result.document.inference.prediction.g1.value)i
i (DateField): The car registration date of the given certificate.
print(result.document.inference.prediction.i.value)j
j (StringField): The vehicle's category.
print(result.document.inference.prediction.j.value)j1
j1 (StringField): The vehicle's national type.
print(result.document.inference.prediction.j1.value)j2
j2 (StringField): The vehicle's body type (CE).
print(result.document.inference.prediction.j2.value)j3
j3 (StringField): The vehicle's body type (National designation).
print(result.document.inference.prediction.j3.value)MRZ Line 1
mrz1 (StringField): Machine Readable Zone, first line.
print(result.document.inference.prediction.mrz1.value)MRZ Line 2
mrz2 (StringField): Machine Readable Zone, second line.
print(result.document.inference.prediction.mrz2.value)Owner's First Name
owner_first_name (StringField): The vehicle's owner first name.
print(result.document.inference.prediction.owner_first_name.value)Owner's Surname
owner_surname (StringField): The vehicle's owner surname.
print(result.document.inference.prediction.owner_surname.value)p1
p1 (StringField): The vehicle engine's displacement (cm3).
print(result.document.inference.prediction.p1.value)p2
p2 (StringField): The vehicle's maximum net power (kW).
print(result.document.inference.prediction.p2.value)p3
p3 (StringField): The vehicle's fuel type or energy source.
print(result.document.inference.prediction.p3.value)p6
p6 (StringField): The vehicle's administrative power (fiscal horsepower).
print(result.document.inference.prediction.p6.value)q
q (StringField): The vehicle's power to weight ratio.
print(result.document.inference.prediction.q.value)s1
s1 (StringField): The vehicle's number of seats.
print(result.document.inference.prediction.s1.value)s2
s2 (StringField): The vehicle's number of standing rooms (person).
print(result.document.inference.prediction.s2.value)u1
u1 (StringField): The vehicle's sound level (dB).
print(result.document.inference.prediction.u1.value)u2
u2 (StringField): The vehicle engine's rotation speed (RPM).
print(result.document.inference.prediction.u2.value)v7
v7 (StringField): The vehicle's CO2 emission (g/km).
print(result.document.inference.prediction.v7.value)x1
x1 (StringField): Next technical control date.
print(result.document.inference.prediction.x1.value)y1
y1 (StringField): Amount of the regional proportional tax of the registration (in euros).
print(result.document.inference.prediction.y1.value)y2
y2 (StringField): Amount of the additional parafiscal tax of the registration (in euros).
print(result.document.inference.prediction.y2.value)y3
y3 (StringField): Amount of the additional CO2 tax of the registration (in euros).
print(result.document.inference.prediction.y3.value)y4
y4 (StringField): Amount of the fee for managing the registration (in euros).
print(result.document.inference.prediction.y4.value)y5
y5 (StringField): Amount of the fee for delivery of the registration certificate in euros.
print(result.document.inference.prediction.y5.value)y6
y6 (StringField): Total amount of registration fee to be paid in euros.
print(result.document.inference.prediction.y6.value)Last updated
Was this helpful?

