FR Carte Grise

The Node.js SDK supports the Mindee V1 Carte Grise API.

Product Specifications

Specification
Details

Endpoint Name

carte_grise

Recommended Version

v1.1

Supports Polling/Webhooks

❌ No

Support Synchronous HTTP Calls

✔️ Yes

Geography

🇫🇷 France

Quick-Start

Using the sample below, we are going to illustrate how to extract the data that we want using the SDK.

Carte Grise Sample

Sample Code

const mindee = require("mindee");
// for TS or modules:
// import * as mindee from "mindee";

// Init a new client
const mindeeClient = new mindee.Client({ apiKey: "my-api-key" });

// Load a file from disk
const inputSource = mindeeClient.docFromPath("/path/to/the/file.ext");

// Parse the file
const apiResponse = mindeeClient.parse(
  mindee.product.fr.CarteGriseV1,
  inputSource
);

// Handle the response Promise
apiResponse.then((resp) => {
  // print a string summary
  console.log(resp.document.toString());
});

Sample Output (rST)

########
Document
########
:Mindee ID: 4443182b-57c1-4426-a288-01b94f226e84
:Filename: default_sample.jpg

Inference
#########
:Product: mindee/carte_grise v1.1
:Rotation applied: Yes

Prediction
==========
:a: AB-123-CD
:b: 1998-01-05
:c1: DUPONT YVES
:c3: 27 RUE DES ROITELETS 59169 FERIN LES BAINS FRANCE
:c41: 2 DELAROCHE
:c4a: EST LE PROPRIETAIRE DU VEHICULE
:d1:
:d3: MODELE
:e: VFS1V2009AS1V2009
:f1: 1915
:f2: 1915
:f3: 1915
:g: 3030
:g1: 1307
:i: 2009-12-04
:j: N1
:j1: VP
:j2: AA
:j3: CI
:p1: 1900
:p2: 90
:p3: GO
:p6: 6
:q: 006
:s1: 5
:s2:
:u1: 77
:u2: 3000
:v7: 155
:x1: 2011-07-06
:y1: 17835
:y2:
:y3: 0
:y4: 4
:y5: 2.5
:y6: 178.35
:Formula Number: 2009AS05284
:Owner's First Name: YVES
:Owner's Surname: DUPONT
:MRZ Line 1:
:MRZ Line 2: CI<<MARQUES<<<<<<<MODELE<<<<<<<2009AS0528402

Page Predictions
================

Page 0
------
:a: AB-123-CD
:b: 1998-01-05
:c1: DUPONT YVES
:c3: 27 RUE DES ROITELETS 59169 FERIN LES BAINS FRANCE
:c41: 2 DELAROCHE
:c4a: EST LE PROPRIETAIRE DU VEHICULE
:d1:
:d3: MODELE
:e: VFS1V2009AS1V2009
:f1: 1915
:f2: 1915
:f3: 1915
:g: 3030
:g1: 1307
:i: 2009-12-04
:j: N1
:j1: VP
:j2: AA
:j3: CI
:p1: 1900
:p2: 90
:p3: GO
:p6: 6
:q: 006
:s1: 5
:s2:
:u1: 77
:u2: 3000
:v7: 155
:x1: 2011-07-06
:y1: 17835
:y2:
:y3: 0
:y4: 4
:y5: 2.5
:y6: 178.35
:Formula Number: 2009AS05284
:Owner's First Name: YVES
:Owner's Surname: DUPONT
:MRZ Line 1:
:MRZ Line 2: CI<<MARQUES<<<<<<<MODELE<<<<<<<2009AS0528402

Standard Fields

These fields are generic and used in several products.

Basic Field

Each prediction object contains a set of fields that inherit from the generic Field class.

A typical Field object will have the following attributes:

  • value (number | string): corresponds to the field value. Can be undefined if no value was extracted.

  • confidence (number): the confidence score of the field prediction.

  • boundingBox ([Point, Point, Point, Point]): contains exactly 4 relative vertices (points) coordinates of a right rectangle containing the field in the document.

  • polygon (Point[]): contains the relative vertices coordinates (Point) of a polygon containing the field in the image.

  • pageId (number): the ID of the page, always undefined when at document-level.

  • reconstructed (boolean): indicates whether an object was reconstructed (not extracted as the API gave it).

A Point simply refers to an array of two numbers ([number, number]).

Aside from the previous attributes, all basic fields have access to a toString() method that can be used to print their value as a string.

Date Field

Aside from the basic Field attributes, the date field DateField also implements the following:

  • dateObject (Date): an accessible representation of the value as a JavaScript object.

String Field

The text field StringField only has one constraint: its value is a string (or undefined).

Attributes

The following fields are extracted for Carte Grise V1:

a

a (StringField): The vehicle's license plate number.

console.log(result.document.inference.prediction.a.value);

b

b (DateField): The vehicle's first release date.

console.log(result.document.inference.prediction.b.value);

c1

c1 (StringField): The vehicle owner's full name including maiden name.

console.log(result.document.inference.prediction.c1.value);

c3

c3 (StringField): The vehicle owner's address.

console.log(result.document.inference.prediction.c3.value);

c41

c41 (StringField): Number of owners of the license certificate.

console.log(result.document.inference.prediction.c41.value);

c4a

c4A (StringField): Mentions about the ownership of the vehicle.

console.log(result.document.inference.prediction.c4A.value);

d1

d1 (StringField): The vehicle's brand.

console.log(result.document.inference.prediction.d1.value);

d3

d3 (StringField): The vehicle's commercial name.

console.log(result.document.inference.prediction.d3.value);

e

e (StringField): The Vehicle Identification Number (VIN).

console.log(result.document.inference.prediction.e.value);

f1

f1 (StringField): The vehicle's maximum admissible weight.

console.log(result.document.inference.prediction.f1.value);

f2

f2 (StringField): The vehicle's maximum admissible weight within the license's state.

console.log(result.document.inference.prediction.f2.value);

f3

f3 (StringField): The vehicle's maximum authorized weight with coupling.

console.log(result.document.inference.prediction.f3.value);

Formula Number

formulaNumber (StringField): The document's formula number.

console.log(result.document.inference.prediction.formulaNumber.value);

g

g (StringField): The vehicle's weight with coupling if tractor different than category M1.

console.log(result.document.inference.prediction.g.value);

g1

g1 (StringField): The vehicle's national empty weight.

console.log(result.document.inference.prediction.g1.value);

i

i (DateField): The car registration date of the given certificate.

console.log(result.document.inference.prediction.i.value);

j

j (StringField): The vehicle's category.

console.log(result.document.inference.prediction.j.value);

j1

j1 (StringField): The vehicle's national type.

console.log(result.document.inference.prediction.j1.value);

j2

j2 (StringField): The vehicle's body type (CE).

console.log(result.document.inference.prediction.j2.value);

j3

j3 (StringField): The vehicle's body type (National designation).

console.log(result.document.inference.prediction.j3.value);

MRZ Line 1

mrz1 (StringField): Machine Readable Zone, first line.

console.log(result.document.inference.prediction.mrz1.value);

MRZ Line 2

mrz2 (StringField): Machine Readable Zone, second line.

console.log(result.document.inference.prediction.mrz2.value);

Owner's First Name

ownerFirstName (StringField): The vehicle's owner first name.

console.log(result.document.inference.prediction.ownerFirstName.value);

Owner's Surname

ownerSurname (StringField): The vehicle's owner surname.

console.log(result.document.inference.prediction.ownerSurname.value);

p1

p1 (StringField): The vehicle engine's displacement (cm3).

console.log(result.document.inference.prediction.p1.value);

p2

p2 (StringField): The vehicle's maximum net power (kW).

console.log(result.document.inference.prediction.p2.value);

p3

p3 (StringField): The vehicle's fuel type or energy source.

console.log(result.document.inference.prediction.p3.value);

p6

p6 (StringField): The vehicle's administrative power (fiscal horsepower).

console.log(result.document.inference.prediction.p6.value);

q

q (StringField): The vehicle's power to weight ratio.

console.log(result.document.inference.prediction.q.value);

s1

s1 (StringField): The vehicle's number of seats.

console.log(result.document.inference.prediction.s1.value);

s2

s2 (StringField): The vehicle's number of standing rooms (person).

console.log(result.document.inference.prediction.s2.value);

u1

u1 (StringField): The vehicle's sound level (dB).

console.log(result.document.inference.prediction.u1.value);

u2

u2 (StringField): The vehicle engine's rotation speed (RPM).

console.log(result.document.inference.prediction.u2.value);

v7

v7 (StringField): The vehicle's CO2 emission (g/km).

console.log(result.document.inference.prediction.v7.value);

x1

x1 (StringField): Next technical control date.

console.log(result.document.inference.prediction.x1.value);

y1

y1 (StringField): Amount of the regional proportional tax of the registration (in euros).

console.log(result.document.inference.prediction.y1.value);

y2

y2 (StringField): Amount of the additional parafiscal tax of the registration (in euros).

console.log(result.document.inference.prediction.y2.value);

y3

y3 (StringField): Amount of the additional CO2 tax of the registration (in euros).

console.log(result.document.inference.prediction.y3.value);

y4

y4 (StringField): Amount of the fee for managing the registration (in euros).

console.log(result.document.inference.prediction.y4.value);

y5

y5 (StringField): Amount of the fee for delivery of the registration certificate in euros.

console.log(result.document.inference.prediction.y5.value);

y6

y6 (StringField): Total amount of registration fee to be paid in euros.

console.log(result.document.inference.prediction.y6.value);

Last updated

Was this helpful?