FR Carte Grise
FR Carte Grise
The Java SDK supports the Mindee V1 Carte Grise API.
Product Specifications
Endpoint Name
carte_grise
Recommended Version
v1.1
Supports Polling/Webhooks
❌ No
Support Synchronous HTTP Calls
✔️ Yes
Geography
🇫🇷 France
Quick-Start
Using the sample below, we are going to illustrate how to extract the data that we want using the SDK.

Sample Code
import com.mindee.MindeeClient;
import com.mindee.input.LocalInputSource;
import com.mindee.parsing.common.PredictResponse;
import com.mindee.product.fr.cartegrise.CarteGriseV1;
import java.io.File;
import java.io.IOException;
public class SimpleMindeeClient {
public static void main(String[] args) throws IOException {
String apiKey = "my-api-key";
String filePath = "/path/to/the/file.ext";
// Init a new client
MindeeClient mindeeClient = new MindeeClient(apiKey);
// Load a file from disk
LocalInputSource inputSource = new LocalInputSource(filePath);
// Parse the file
PredictResponse<CarteGriseV1> response = mindeeClient.parse(
CarteGriseV1.class,
inputSource
);
// Print a summary of the response
System.out.println(response.toString());
// Print a summary of the predictions
// System.out.println(response.getDocument().toString());
// Print the document-level predictions
// System.out.println(response.getDocument().getInference().getPrediction().toString());
// Print the page-level predictions
// response.getDocument().getInference().getPages().forEach(
// page -> System.out.println(page.toString())
// );
}
}
Sample Output (rST)
########
Document
########
:Mindee ID: 4443182b-57c1-4426-a288-01b94f226e84
:Filename: default_sample.jpg
Inference
#########
:Product: mindee/carte_grise v1.1
:Rotation applied: Yes
Prediction
==========
:a: AB-123-CD
:b: 1998-01-05
:c1: DUPONT YVES
:c3: 27 RUE DES ROITELETS 59169 FERIN LES BAINS FRANCE
:c41: 2 DELAROCHE
:c4a: EST LE PROPRIETAIRE DU VEHICULE
:d1:
:d3: MODELE
:e: VFS1V2009AS1V2009
:f1: 1915
:f2: 1915
:f3: 1915
:g: 3030
:g1: 1307
:i: 2009-12-04
:j: N1
:j1: VP
:j2: AA
:j3: CI
:p1: 1900
:p2: 90
:p3: GO
:p6: 6
:q: 006
:s1: 5
:s2:
:u1: 77
:u2: 3000
:v7: 155
:x1: 2011-07-06
:y1: 17835
:y2:
:y3: 0
:y4: 4
:y5: 2.5
:y6: 178.35
:Formula Number: 2009AS05284
:Owner's First Name: YVES
:Owner's Surname: DUPONT
:MRZ Line 1:
:MRZ Line 2: CI<<MARQUES<<<<<<<MODELE<<<<<<<2009AS0528402
Page Predictions
================
Page 0
------
:a: AB-123-CD
:b: 1998-01-05
:c1: DUPONT YVES
:c3: 27 RUE DES ROITELETS 59169 FERIN LES BAINS FRANCE
:c41: 2 DELAROCHE
:c4a: EST LE PROPRIETAIRE DU VEHICULE
:d1:
:d3: MODELE
:e: VFS1V2009AS1V2009
:f1: 1915
:f2: 1915
:f3: 1915
:g: 3030
:g1: 1307
:i: 2009-12-04
:j: N1
:j1: VP
:j2: AA
:j3: CI
:p1: 1900
:p2: 90
:p3: GO
:p6: 6
:q: 006
:s1: 5
:s2:
:u1: 77
:u2: 3000
:v7: 155
:x1: 2011-07-06
:y1: 17835
:y2:
:y3: 0
:y4: 4
:y5: 2.5
:y6: 178.35
:Formula Number: 2009AS05284
:Owner's First Name: YVES
:Owner's Surname: DUPONT
:MRZ Line 1:
:MRZ Line 2: CI<<MARQUES<<<<<<<MODELE<<<<<<<2009AS0528402Field Types
Standard Fields
These fields are generic and used in several products.
BaseField
Each prediction object contains a set of fields that inherit from the generic BaseField class. A typical BaseField object will have the following attributes:
confidence (
Double): the confidence score of the field prediction.boundingBox (
Polygon): contains exactly 4 relative vertices (points) coordinates of a right rectangle containing the field in the document.polygon (
Polygon): contains the relative vertices coordinates (polygonextendsList<Point>) of a polygon containing the field in the image.pageId (
Integer): the ID of the page, alwaysnullwhen at document-level.
Aside from the previous attributes, all basic fields have access to a custom toString method that can be used to print their value as a string.
StringField
The text field StringField extends BaseField, but also implements:
value (
String): corresponds to the field value.rawValue (
String): corresponds to the raw value as it appears on the document.
DateField
The date field DateField extends BaseField, but also implements:
value (
LocalDate): an accessible representation of the value as a Java object. Can benull.
Attributes
The following fields are extracted for Carte Grise V1:
a
a: The vehicle's license plate number.
System.out.println(
result.getDocument().getInference().getPrediction().getA().value
);b
b: The vehicle's first release date.
System.out.println(
result.getDocument().getInference().getPrediction().getB().value
);c1
c1: The vehicle owner's full name including maiden name.
System.out.println(
result.getDocument().getInference().getPrediction().getC1().value
);c3
c3: The vehicle owner's address.
System.out.println(
result.getDocument().getInference().getPrediction().getC3().value
);c41
c41: Number of owners of the license certificate.
System.out.println(
result.getDocument().getInference().getPrediction().getC41().value
);c4a
c4A: Mentions about the ownership of the vehicle.
System.out.println(
result.getDocument().getInference().getPrediction().getC4A().value
);d1
d1: The vehicle's brand.
System.out.println(
result.getDocument().getInference().getPrediction().getD1().value
);d3
d3: The vehicle's commercial name.
System.out.println(
result.getDocument().getInference().getPrediction().getD3().value
);e
e: The Vehicle Identification Number (VIN).
System.out.println(
result.getDocument().getInference().getPrediction().getE().value
);f1
f1: The vehicle's maximum admissible weight.
System.out.println(
result.getDocument().getInference().getPrediction().getF1().value
);f2
f2: The vehicle's maximum admissible weight within the license's state.
System.out.println(
result.getDocument().getInference().getPrediction().getF2().value
);f3
f3: The vehicle's maximum authorized weight with coupling.
System.out.println(
result.getDocument().getInference().getPrediction().getF3().value
);Formula Number
formulaNumber: The document's formula number.
System.out.println(
result.getDocument().getInference().getPrediction().getFormulaNumber().value
);g
g: The vehicle's weight with coupling if tractor different than category M1.
System.out.println(
result.getDocument().getInference().getPrediction().getG().value
);g1
g1: The vehicle's national empty weight.
System.out.println(
result.getDocument().getInference().getPrediction().getG1().value
);i
i: The car registration date of the given certificate.
System.out.println(
result.getDocument().getInference().getPrediction().getI().value
);j
j: The vehicle's category.
System.out.println(
result.getDocument().getInference().getPrediction().getJ().value
);j1
j1: The vehicle's national type.
System.out.println(
result.getDocument().getInference().getPrediction().getJ1().value
);j2
j2: The vehicle's body type (CE).
System.out.println(
result.getDocument().getInference().getPrediction().getJ2().value
);j3
j3: The vehicle's body type (National designation).
System.out.println(
result.getDocument().getInference().getPrediction().getJ3().value
);MRZ Line 1
mrz1: Machine Readable Zone, first line.
System.out.println(
result.getDocument().getInference().getPrediction().getMrz1().value
);MRZ Line 2
mrz2: Machine Readable Zone, second line.
System.out.println(
result.getDocument().getInference().getPrediction().getMrz2().value
);Owner's First Name
ownerFirstName: The vehicle's owner first name.
System.out.println(
result.getDocument().getInference().getPrediction().getOwnerFirstName().value
);Owner's Surname
ownerSurname: The vehicle's owner surname.
System.out.println(
result.getDocument().getInference().getPrediction().getOwnerSurname().value
);p1
p1: The vehicle engine's displacement (cm3).
System.out.println(
result.getDocument().getInference().getPrediction().getP1().value
);p2
p2: The vehicle's maximum net power (kW).
System.out.println(
result.getDocument().getInference().getPrediction().getP2().value
);p3
p3: The vehicle's fuel type or energy source.
System.out.println(
result.getDocument().getInference().getPrediction().getP3().value
);p6
p6: The vehicle's administrative power (fiscal horsepower).
System.out.println(
result.getDocument().getInference().getPrediction().getP6().value
);q
q: The vehicle's power to weight ratio.
System.out.println(
result.getDocument().getInference().getPrediction().getQ().value
);s1
s1: The vehicle's number of seats.
System.out.println(
result.getDocument().getInference().getPrediction().getS1().value
);s2
s2: The vehicle's number of standing rooms (person).
System.out.println(
result.getDocument().getInference().getPrediction().getS2().value
);u1
u1: The vehicle's sound level (dB).
System.out.println(
result.getDocument().getInference().getPrediction().getU1().value
);u2
u2: The vehicle engine's rotation speed (RPM).
System.out.println(
result.getDocument().getInference().getPrediction().getU2().value
);v7
v7: The vehicle's CO2 emission (g/km).
System.out.println(
result.getDocument().getInference().getPrediction().getV7().value
);x1
x1: Next technical control date.
System.out.println(
result.getDocument().getInference().getPrediction().getX1().value
);y1
y1: Amount of the regional proportional tax of the registration (in euros).
System.out.println(
result.getDocument().getInference().getPrediction().getY1().value
);y2
y2: Amount of the additional parafiscal tax of the registration (in euros).
System.out.println(
result.getDocument().getInference().getPrediction().getY2().value
);y3
y3: Amount of the additional CO2 tax of the registration (in euros).
System.out.println(
result.getDocument().getInference().getPrediction().getY3().value
);y4
y4: Amount of the fee for managing the registration (in euros).
System.out.println(
result.getDocument().getInference().getPrediction().getY4().value
);y5
y5: Amount of the fee for delivery of the registration certificate in euros.
System.out.println(
result.getDocument().getInference().getPrediction().getY5().value
);y6
y6: Total amount of registration fee to be paid in euros.
System.out.println(
result.getDocument().getInference().getPrediction().getY6().value
);Last updated
Was this helpful?

